Bases neurobiólogicas de la atención temprana - Downciclopedia

Inicio / Educación / Atención Temprana / Motricidad gruesa

Bases neurobiólogicas de la atención temprana

Jesús Flórez
Catedrático de Farmacología

 

Sumario

  1. Introducción
  2. La plasticidad del sistema nervioso central
  3. Datos experimentales: el enriquecimiento ambiental
  4. La atención temprana en el síndrome de Down
  5. Resumen y conclusiones
  6. Bibliografía

 

1. Introducción

La demostración de que la intervención del ambiente influye decisivamente sobre la maduración y el desarrollo final del cerebro constituye la base fundamental de lo que actualmente entendemos como atención temprana. La aplicación sistemática de este tipo de intervención a los niños con síndrome de Down desde el nacimiento, e incluso en el período fetal, aconseja que prestemos la necesaria atención a comprender las razones biológicas que apoyan su utilización.

 

2. La plasticidad del sistema nervioso central

2.1. Concepto, formas y expresión

Todo el concepto y la estrategia de la atención temprana se basa en una propiedad fundamental de los seres humanos: la plasticidad de su sistema nervioso que denominaremos neuroplasticidad.

La neuroplasticidad se define como la capacidad que tiene el sistema nervioso para responder y, sobre todo, para adaptarse a las modificaciones que sobrevienen en su entorno, sean cambios intrínsecos a su propio desarrollo, o cambios ambientales en el ambiente, incluidos los que poseen un carácter agresivo (Bavelier y Neville, 2002). Como sistema dispuesto y preparado para recibir toda la información sensorial, procesarla e integrarla, y como sistema capaz de generar respuestas y ejecutar funciones, la plasticidad del sistema nervioso le permite adaptarse a las circunstancias que varían en uno u otro sentido. La neuroplasticidad del cerebro, pues, se mide por su capacidad adaptativa, es decir, su capacidad para modificar su propia estructura, organización y funcionamiento.

 

Tanto durante el desarrollo como durante el envejecimiento se producen cambios en la organización del sistema nervioso central (SNC). Además, maniobras con particular exigencia (como puede ser el ejercicio continuado, la práctica intensa, o las necesidades propias del día a día) provocan modificaciones en el SNC que influyen sobre el aprendizaje y la memoria. También los sucesos traumáticos que lesionan el SNC y se acompañan de deprivación o desaferenciación sensorial inducen cambios plásticos en su área correspondiente, y en la de otras áreas corticales, que pueden adoptar las siguientes formas (Bavelier y Neville, 2002; Röder y Rösler, 2004):

 

  1. La adaptación de un área homóloga (p. ej., en el hemisferio contralateral).
  2. La asignación de otra área de función distinta: sustitución transmodal.         
  3. La expansión del área cerebral.          
  4. La nueva asignación compensatoria de procesos neurocognitivos.

La capacidad adaptativa propia de la neuroplasticidad puede expresarse a niveles múltiples, desde los más básicos y fundamentales hasta los más globales:

 

  • genes y su transcripción
  • modificación de moléculas
  • sinapsis
  • neuronas
  • redes y sistemas neuronales
  • el SNC en su conjunto

 

El análisis de la plasticidad puede realizarse en cada uno de estos niveles si se utilizan las técnicas correspondientes. Pero, en último término, lo que nos interesará será comprobar la consecuencia funcional de esos cambios adaptativos: cómo se desarrolla la función servida por una determinada área o sistema neural del cerebro.

En términos generales, se suele diferenciar la plasticidad fisiológica de la plasticidad morfológica. La plasticidad fisiológica refleja los cambios ocasionados en las propiedades de las respuestas de las neuronas y sus conexiones. La plasticidad anatómica implica cambios en la estructura de la neurona y el neuropilo: número de neuronas, tamaño de sus arborizaciones, número de sinapsis, etc. Obviamente, ambos tipos de plasticidad no son contrapuestos: pueden aparecer conjuntamente o pueden hacerlo de forma separada; es decir, puede demostrarse la plasticidad fisiológica (p. ej., como aumento de la eficacia sináptica) sin que se demuestre plasticidad anatómica (p. ej., no hay cambio alguno estructural).

Huelga decir que neuroplasticidad muestra su doble cara, en cuanto que la adaptación, el cambio en la función o en la estructura, aparece tanto en sentido positivo como negativo.

Cabe hablar de un patrón temporal en la sucesión de cambios que observamos como respuesta de las estructuras nerviosas ante un suceso estimulante. Inicialmente, puede ser un simple fenómeno fisiológico (p. ej., mayor número de moléculas transmisoras liberadas en una sinapsis, mayor número de descargas de la neurona). Pero si el estímulo persiste y la activación se consolida, aparecen ya cambios estructurales que refuerzan los anteriores (p. ej., mayor número de sinapsis). Esto permite distinguir, en función del tiempo transcurrido, entre:

  1. cambios rápidos o inmediatos (segundos a horas)
  2. cambios retardados o diferidos (días a meses)

 

Los inmediatos son fundamentalmente de tipo fisiológico; los retardados son principalmente anatómicos: brotes sinápticos nuevos, desarrollo de ramificaciones, etc.

En definitiva, el término de plasticidad neuronal va íntimamente asociado al de cambio en el estado funcional de la neurona (fisiológico, morfológico). Desde ese punto de vista, podríamos establecer un análisis comparado entre los cambios que observamos en una neurona conforme se va desarrollando en las fases propias del desarrollo cerebral, y los cambios que observamos cuando la neurona recibe una influencia que la invita a sufrir una modificación.

Puesto que el valor último de los cambios plásticos lo vamos a medir por el establecimiento y reforzamiento de sinapsis, conviene que fijemos la atención en los mecanismos que intervienen. No basta que la neurona emita una prolongación en busca de su diana; es preciso que esa diana atraiga a la prolongación y, por así decir, simpatice con ella, es decir, establezca un contacto en acuerdo mutuo para que ambas células, la emisora y la diana, modifiquen sus estructuras hasta que se conforme la sinapsis en toda su complejidad. Esto significa la síntesis y la ubicación especializada de numerosas moléculas y estructuras, dirigidas por la acción esencial de los correspondientes genes.

 

2.2. La transmisión de naturaleza glutamatérgica

En el establecimiento y reforzamiento de sinapsis intervienen, entre otros, unos mecanismos reforzadores derivados de la acción de un particular neurotransmisor de carácter activador, el ácido glutámico, que va a actuar a través de sus receptores específicos AMPA y NMDA. La activación normal de una vía aferente libera ácido glutámico en cantidad moderada, capaz de estimular exclusivamente el receptor AMPA asociado a un canal de Na+, originando así una breve despolarización. En cambio, el receptor glutamatérgico NMDA no contribuye a la respuesta porque el canal a él asociado permanece cerrado al estar bloqueado por iones Mg2+. Sin embargo, cuando el estímulo es muy intenso el número de receptores AMPA activados aumenta, la despolarización es mucho más intensa y alcanza el valor necesario para vencer el bloqueo de Mg2+ al desplazar a estos iones de su asociación al receptor-canal NMDA: el canal queda libre para que fluya un gran número de iones Ca2+. Es decir, los receptores NMDA son plenamente activos sólo cuando se ensambla la combinación de un determinado voltaje y de un determinado mediador. Esta irrupción de Ca2+ en la estructura postsináptica va a desencadenar una cascada de reacciones neuroquímicas de gran trascendencia.

 

2.3. Maduración cerebral, estimulación y experiencia

Entre los rasgos más sobresalientes del SNC destaca la exquisita precisión de su ingente número de conexiones. Esta configuración tan compleja resulta tanto más sorprendente si consideramos que, en el momento del nacimiento, las conexiones neuronales prácticamente no están establecidas. Estas conexiones neurales definitivas se van a establecer merced a la remodelación de la configuración inicial inmadura que contenía sólo un esbozo o insinuación de lo que será el modelo adulto definitivo. A medida que el cerebro crece, aumenta el número de sus prolongaciones y de los contactos sinápticos que establecen. El hecho de que sea necesaria la actividad neuronal para completar el desarrollo implica que la maduración cerebral es modificable a través de su propia estimulación y de la experiencia, proporcionando al cerebro la adaptabilidad necesaria. Este esquema resulta probablemente más económico desde el punto de vista biológico, ya que un modelo en el que se necesitara el control genético para la formación de todas las sinapsis exigiría un ingente número de marcadores moleculares específicos  y de sus respectivos genes (Yusuf, 2002).

En las primeras etapas del desarrollo existe poco espacio para que aparezcan cambios plásticos; digamos que la programación es eminentemente genética y poco asequible a ser manipulada. En las etapas más posteriores del desarrollo, sin embargo, la plasticidad influye de manera mucho más destacada, de forma que la experiencia inicial controla en parte la riqueza de conexiones entre las neuronas, y es sustancialmente responsable de todo el rico entramado final. En las etapas postnatales, las diversas influencias y estímulos van provocando nuevos brotes dendríticos y axónicos, con nuevas ramificaciones. Y finalmente, van estableciendo, reforzando o eliminando los contactos sinápticos hasta conseguir la remodelación final de los circuitos.

Se acepta que existen momentos o períodos especiales en los que cada una de las distintas áreas del SNC presenta especial sensibilidad y capacidad de respuesta para la modificación inducida por las diversas influencias. Por lo que sabemos, la influencia de la experiencia afecta más a la organización final de los circuitos locales que a las vías principales, porque para entonces ya se ha completado la organización topográfica de los grandes circuitos.

Aunque sabemos poco de los factores que controlan la duración y el momento en que se establecen estos periodos de especial sensibilidad, guardan particular relación con la sinaptogénesis, es decir, con una fase en la que existe hiperproducción de sinapsis en la corteza cerebral. Pero muchas de estas sinapsis se van a perder dando origen a un fenómeno de remodelación de gran calado. Podríamos decir que el programa de desarrollo genéticamente preestablecido configura las fases de producción o estallido sináptico: un periodo de particular sensibilidad para recibir la información sensorial que en último término va a condicionar y dirigir el aprendizaje. Pero es el individuo con las influencias externas que lo circundan quien decidirá al final cuál ha de ser el entramado de redes sinápticas que se forman, que será lo que haya de condicionar su experiencia, su aprendizaje (Yusuf, 2002).

No todas las áreas cerebrales presentan periodos de sinaptogénesis y de pérdida sináptica al mismo tiempo (Huttenlocher y Dabholkar, 1997). En la corteza visual primaria hay un brote de sinaptogénesis hacia los 3-4 meses de edad con una densidad máxima a los 4 meses. Pero en la corteza prefrontal tarda más tiempo y alcanza el máximo de densidad sináptica a los 3-5 años. El curso temporal de la eliminación de sinapsis se prolonga también más en la corteza frontal (hasta los 20 años) que en la corteza visual (4 años).

Estos estudios concuerdan con los que se realizan utilizando técnicas funcionales de neuroimagen, o en los estudios de metabolismo cerebral. Podemos, pues, concluir afirmando que son distintos los tiempos de maduración para las diversas estructuras cerebrales, y que las áreas primarias corticales senso-motoras se desarrollan antes que las grandes áreas de asociación.

 

3. Datos experimentales: el enriquecimiento ambiental

Así como los experimentos de deprivación sensorial (visual, auditiva, etc.) y nutricional provocan cambios degenerativos en el neurodesarrollo y procesos de readaptación de circuitos y conexiones neurales, los experimentos de estimulación demuestran la promoción del neurodesarrollo (Rampon et al., 2000; Rosenzweiger et al., 1996). Hemos visto que los sistemas cerebrales responsables de la percepción sensorial tienen una maduración temprana, mientras que los responsables de la integración de la información, es decir, los sistemas metacognitivos cuya actividad se centra en la corteza prefrontal, como área de asociación terciaria, son de maduración más tardía. Sin embargo, están expuestos igualmente a la influencia de la experiencia e incluso puedan ser más sensibles a ella que los sistemas sensoriomotores. El aprendizaje y la experiencia provocan modificaciones cerebrales tanto neuroquímicas como neuromorfológicas, refuerzan los contactos sinápticos ya existentes y favorecen la formación de nuevos contactos entre las células.

Son muchos los modelos experimentales que se han utilizado para valorar la influencia de las modificaciones del ambiente sobre el desarrollo cognitivo. Quizá uno de los que alcanza resultados más sorprendentes es el modelo de enriquecimiento ambiental. En este modelo, los animales (generalmente roedores: ratas y, menos frecuentemente, ratones) son estabulados en jaulas más grandes lo habitual, y en mayor número por jaula. En las jaulas se colocan juguetes que se van cambiando, de formas y colores variados. Se incluyen escaleras, ruedas giratorias, y se plantean dificultades para el acceso a la comida que también puede ser varias en textura y sabor. Los animales que han sido sometidos a este tipo de estimulación durante periodos variados de tiempo (generalmente, 1 o 2 meses después del destete) presentan diferencias sustanciales frente a sus compañeros estabulados en condiciones estándar: realizan mejor las pruebas que requieren un aprendizaje complejo, son más competentes en las pruebas que evalúan la memoria visoespacial y la memoria a corto plazo, e incluso pueden mostrar signos más tardíos de envejecimiento. Estos resultados de carácter cognitivo se acompañan de modificaciones neuroanatómicas, como son: el aumento de grosor de la corteza cerebral, el incremento en el número de las espinas dendríticas y el aumento en el número y tamaño de las sinapsis, y el aumento del proceso de neurogénesis arriba descrito. A nivel neuroquímico, se aprecia un incremento en la expresión de numerosos genes que tienen que ver con el desarrollo neuronal, y modificaciones en el funcionamiento de las vías de señalización intraneuronal que son activadas en respuesta a estímulos neuroquímicos diversos.

Pero no es sólo la estimulación ambiental la que puede originar modificaciones perdurables en el neurodesarrollo. Estimulaciones más sutiles como es la estimulación táctil postnatal, mantenida de modo suave y permanente durante un cierto tiempo después del nacimiento (manipulación táctil consistente) ejerce efectos beneficiosos en forma de una menor reactividad emocional, menos tendencia al estrés, mayor capacidad de aprendizaje en situaciones emocionales. Mientras que cuando la estimulación es “inconsistente” porque las maniobras táctiles han sido irregulares en su forma y frecuencia, los animales presentan mayor reactividad emocional y ven reducida su capacidad para ciertos aprendizajes. Igualmente, se ha comprobado experimentalmente que el favorecimiento del vínculo de la madre con su prole ejerce efectos beneficiosos sobre la cromatina nuclear, que redundan a largo plazo en la activación de genes y la producción de sus correspondientes productos (Dierssen, 1994; Meany y Szyf, 2005)).

De lo expuesto se desprende que el ambiente es capaz de modificar la función y la estructura cerebral, de forma que la experiencia tiene consecuencias en diferentes niveles de integración más o menos perdurables. Esto es especialmente cierto durante las primeras etapas de la vida en las que el desarrollo cerebral en las que la experiencia tiene una importancia mayor, si cabe, ya que no sólo facilita patrones. Pero no siempre la modificación de una función se acompaña de modificación de la estructura, y esto conviene tenerlo muy presente sobre todo cuando el cerebro se encuentra sometido a perturbaciones incisivas y constantes que dificultan la expresión de los procesos adaptativos en toda plenitud.

4. La atención temprana en el síndrome de Down

4.1. ¿De qué realidad partimos?

Hemos podido comprender cómo, en la base del desarrollo del SNC y de la expresión física de todas sus funciones, se encuentra la propiedad de la neuroplasticidad. Es una propiedad sustancial que a lo largo de toda la vida, y con intensidad diferente según las etapas, va a modular muy significativamente la impronta ejercida por el programa genético de cada individuo.

Pero no es lo mismo partir de un sustrato neural, que se va desarrollando conforme a programas y patrones firmemente establecidos en el curso de la evolución, que de un sustrato neural sometido desde su inicio al desequilibrio derivado de la sobredosis de genes de todo un cromosoma, en nuestro caso el 21 (V. http://www.downciclopedia.org/neurobiologia/causas-de-la-disfuncion-cognitiva-en-el-sindrome-de-down).

Existen numerosos trabajos sobre el modo en que la deprivación sensorial de una determinada modalidad puede ser parcialmente compensada mediante el desarrollo vicariante de áreas cerebrales que corresponden a otra modalidad. Y cómo la estimulación sistemáticamente aplicada de una concreta función puede activar áreas anteriormente silenciosas que ayudan a restablecer la función, al menos parcialmente (Röder y Rösssler, 2004).

Pero el problema al que nos enfrentamos en el síndrome de Down es bastante más complejo, por tres motivos fundamentales:

  1. La lesión o perturbación cerebral no queda circunscrita a un territorio sino que es difusa, aunque puede predominar más en unos territorios cerebrales que en otros. Esto significa que no afecta de manera exclusiva a una función, sino a muchas; y tanto más cuanto más una función dependa de la activación coordinada de varias áreas cerebrales.
  2. A la hora de promover la restauración funcional con nuestros sistemas de estimulación, actuamos sobre un terreno genéticamente infradotado. Es decir, si, como ya hemos explicado, la respuesta adaptativa de una neurona como elemento clave de su plasticidad incluye el desencadenamiento de una cascada de reacciones moleculares entre las que se incluye la activación de genes neuronales, muchas de estas reacciones se encuentran comprometidas por la trisomía.
  3. La trisomía persiste a lo largo de la vida; y la del cromosoma 21 conlleva la producción de elementos, o la perturbación en la sucesión de determinadas vías bioquímicas, que terminan por producir elementos neurotóxicos a lo largo de la vida de la persona.

No es nuestra intención poner en tela de juicio el valor que tienen los programas de atención temprana para la crianza global de un bebé con síndrome de Down. La experiencia de muchos expertos indican los ricos beneficios que la atención temprana reporta a los niños con síndrome de Down (Hanson, 1987; Cunningham, 1991; Zulueta, 1991; Candel y Carranza, 1993; Hines y Bennet, 1996; Candel 2003; Zulueta y Mollá, 2006). Lo que es preciso analizar es cuántos de estos beneficios son el fruto directo de la estimulación motora, sensorial y cognitiva que influye sobre el cerebro, y cuántos son el fruto indirecto del ambiente que un buen programa de atención temprana genera en esa unidad funcional que constituye el recién nacido con su familia y el entorno.

Como Mahoney y Perales (2012) han señalado de manera rotunda, la implicación de los padres es elemento esencial para el éxito de las intervenciones sobre el desarrollo en niños pequeños con síndrome de Down y otras discapacidades. Un importante punto de giro en nuestra visión actual sobre la implicación de los padres ha estado relacionado con los esfuerzos recientes realizados para conceptualizar este hecho, a partir del marco que ofrece el modelo parental en el desarrollo de un hijo. El modelo parental destaca las actividades de intervención que maximizan la participación por parte de los padres en aquellas cualidades interactivas que la investigación ha demostrado que van asociadas al desarrollo del niño. La investigación nos muestra que la sensibilidad de los padres para responder activamente a los hijos —responsiveness—constituye una influencia crítica para el desarrollo y el bienestar emocional de los niños con síndrome de Down y otras discapacidades. Las intervenciones que fomentan esta sensibilidad de los padres para responder activamente han conseguido mejorías sustanciales en el desarrollo de los niños.

Las oportunidades que los padres tienen de interactuar con, e influir sobre, el desarrollo de sus hijos son mucho mayores que las que cualquier otro profesional o adulto pueda tener jamás. Este efecto se acentúa por el hecho de que la mayoría de los padres son una influencia constante en las vidas de sus hijos a todo lo largo de los primeros años de su niñez.

Para ilustrar este último punto, Mahoney y MacDonald (2007) llevaron a cabo un análisis hipotético de las oportunidades que tienen los padres para influir en el desarrollo de sus hijos, comparándolos con los maestros, terapeutas o especialistas de la intervención mientras los niños están en educación especial preescolar o en atención temprana . Basándonos en los tipos de servicios de atención temprana que se ofrecen generalmente en los Estados Unidos, supusieron que cuando los niños son matriculados en la educación especial preescolar, las clases a las que atienden duran alrededor de dos horas y media al día, cuatro días a la semana durante aproximadamente 30 semanas al año. Si los niños reciben también terapia, como por ejemplo logopedia o fisioterapia, estas sesiones duran aproximadamente 30 minutos cada una y se ofrecen generalmente un día a la semana durante aproximadamente 35 semanas al año. Además, asumieron que la mayoría de los padres dedican al menos una hora diaria a sus hijos en contacto personal.

Cuando analizaron las clases en términos de cantidad total de tiempo durante el cual los profesores interactúan con los niños (suponiendo dos profesores en una clase divididos entre 12 niños y distribuido el tiempo entre instrucción en grupo, actividades de funcionamiento de la clase, e interacciones individuales), estimaron que los niños reciben aproximadamente 33 minutos en interacción individual con sus maestros cada semana. Y esto debe compararse con los 25 minutos aproximadamente de tiempo individual con los terapeutas y los 420 minutos con los padres cada semana.

Sin embargo, puesto que los padres están con sus hijos 52 semanas al año mientras que profesores y terapeutas lo están como media entre 30 y 35 semanas, la mayor cantidad de tiempo de dedicación individual que los padres pasan con sus hijos cada semana queda ampliada por el número de semanas que pasan con sus hijos a lo largo del año. Suponiendo que la mayoría de los adultos se implican en 10 interacciones por minuto, los padres quedan involucrados en al menos 220.000 interacciones concretas con sus hijos al cabo del año, frente a los profesores de atención temprana que se involucran en aproximadamente 9.900 interacciones, y los terapeutas que lo hacen en 8.750.

Ésta es una estimación extremadamente conservadora de las oportunidades que los padres tienen para influir en el desarrollo de sus hijos. Si los padres emplean dos, tres o más horas cada día en esa interacción, como sucede con muchos padres, la discrepancia entre sus oportunidades y las de los maestros y terapeutas se ampliaría en dos o tres veces más. Es decir, este ejemplo ilustra de qué manera las oportunidades que los padres tienen para influir sobre el desarrollo de sus hijos son sustancialmente superiores a las que los profesores jamás podrían tener, incluso cuando los padres tienen limitado el tiempo de estar con sus hijos por causa del trabajo u otras responsabilidades.

 

Quizá sea el momento de recordar que los programas recomendados aquí y allá a las familias de niños con síndrome de Down, con mayor o menor presión, no es uno solo sino varios. Y que en algunos, la insistencia por aplicar ejercicios agotadores, omnipresentes y omnicomprensivos de ejercicio físico y estimulación sensorial es tal que acorrala a los padres y los acongoja en su deseo de ofrecer al hijo todo lo que les dicen que es necesario. Quizá sea éste el momento de preguntarse: ¿Hay una relación lineal entre estímulo físico y sensorial y desarrollo neuronal? ¿Es posible alcanzar un techo de rendimiento máximo, a partir del cual el incremento de estímulo sea contraproducente y provoque un declive en el resultado global? ¿Es comparable la respuesta neuronal de un cerebro sano a lo que puede conseguirse en un cerebro genéticamente alterado?

 

4.2. El cerebro en el feto y recién nacido con síndrome de Down

Quizá el mensaje más directo y más definitivo nos lo puede dar una sencilla neurona obtenida de la corteza cerebral de un feto con síndrome de Down, mantenida en cultivo y dejada que se desarrolle espontáneamente a lo largo de los días. Cuando una neurona normal es así mantenida, rápidamente se diferencia y desarrolla sus prolongaciones para conectar con otras neuronas próximas a ella al menos durante 14 días. Pero si la neurona fetal proviene de un cerebro con síndrome de Down, al cabo de 7 días inicia un proceso de degeneración y muerte neuronal (Busciglio y Yankner, 1995). La neurona "síndrome de Down" muestra signos de debilidad, su programación no le permite mantenerse viva durante el mismo tiempo que la neurona normal.

Vemos, en definitiva, una debilidad intrínseca en la neurona y en el desarrollo de la corteza cerebral durante el período fetal (Engidawork et al., 2003a, b). Se ha dicho, sin embargo, que en el momento del nacimiento no hay grandes diferencias entre el cerebro del recién nacido sin y con síndrome de Down, ni por el número de neuronas ni por el número de espinas o de sinapsis. Y ciertamente, cuando uno evalúa las funciones psicomotoras de un recién nacido con síndrome de Down obtiene con frecuencia coeficientes de desarrollo que son normales o están muy próximos a la normalidad. No siempre es así, porque sabemos muy bien la gran dispersión de valores que existe entre los individuos con síndrome de Down. Pero, en cualquier caso, esto significa que, pese al desequilibrio proteico cerebral generado por la trisomía, se mantienen los mecanismos básicos de neurogénesis cerebral lo suficientemente bien como para conformar el marco funcional del desarrollo.

Ahora bien, tan pronto como el cerebro es sometido a la intensa estimulación ambiental que debe poner en juego toda la maquinaria arriba señalada para recibir estímulos y responder a ellos en forma de crecimiento del soma neuronal y de sus prolongaciones, de establecimiento y consolidación de las conexiones sinápticas y de la mielinización, sobreviene el relativo fracaso de las neuronas. Su maquinaria, cuyo funcionamiento y capacidad de reserva depende tan directamente de la programación génica, muestra signos de relativa incapacidad. Es entonces cuando, ya en los primeros meses tras el nacimiento, empezamos a observar desviaciones cada vez más claras en la longitud de las prolongaciones dendríticas, en el número de espinas, en las sinapsis establecidas. Paralelamente, los tests de desarrollo nos muestran cifras más bajas, incrementos del tiempo necesario para alcanzar los diversos hitos del desarrollo.

La gran pregunta que nos hacemos es: ¿puede ser todo esto corregido mediante la apropiada y pertinente estimulación? Si atendemos a los reclamos de algunos de los programas de neurodesarrollo propuestos en diversas páginas de Internet, da la impresión de que todo es corregible, que es cuestión de aplicar con la suficiente intensidad y constancia la estimulación apropiada a cada déficit, y nuestro personajito con síndrome de Down se normaliza.

Es cierto que la práctica de programas activos y bien construidos de atención temprana consigue recuperar funciones, mejorar sustancialmente la iniciación y el desarrollo de los procesos cognitivos, mejorar el lenguaje, etc. Es decir, la acción educativa firme, constante e inteligente, activa ese cerebro pese a las trabas que tiene, y le hace utilizar sus recursos de neuroplasticidad.

Pero es experiencia común que esta buena respuesta no es completa, y ahí es donde yerran quienes ofrecen soluciones milagrosas a sus programas de estimulación y crean falsas expectativas que, desgraciadamente, a veces cuestan mucho dinero y un exagerado esfuerzo para las familias. Podemos mejorar y mejoramos ciertas funciones más asequibles, pero es imposible conseguir el pleno restablecimiento de todas las áreas que en mayor o menor grado se ven afectadas por la trisomía. El problema es mayor cuando se trata de áreas de integración, es decir, de aquellas áreas que no reciben directa y primariamente los estímulos sensoriales modales, sino que integran de forma secundaria o terciaria la información plurimodal.

 

4.3. ¿Qué nos dicen los modelos animales de síndrome de Down?

Ha sido abordada esta cuestión en uno de los modelos animales de síndrome de Down más mundialmente reconocido y utilizado, el ratón Ts65Dn (Martínez-Cué et al., 2002; 2005). Es un ratón que tiene trisomía parcial del cromosoma 16, un cromosoma que contiene una larga secuencia de genes ortólogos del cromosoma 21 humano, concretamente desde la región cercana al conjunto de genes Gabpa/App hasta Znf295. Diversos grupos de ratoncitos recién destetados, tanto trisómicos como sus hermanos normales, fueron sometidos a una etapa de enriquecimiento ambiental durante un periodo de 6 semanas. Terminado el período de enriquecimiento, se analizó su capacidad de aprendizaje en diversos tests, entre los que predominó el test del laberinto acuático de Morris, que consiste básicamente en aprender a reconocer la presencia de una plataforma sumergida en un tanque de agua, que permanece invisible. Algunos de estos ratones fueron después sacrificados para analizar su cerebro y contar las dendritas y espinas de las neuronas piramidales de un área de la corteza cerebral.

El enriquecimiento ambiental mejoró parcialmente el aprendizaje visoespecial en las hembras trisómicas, no así en los machos trisómicos en los que incluso empeoró su aprendizaje. Cuando en un trabajo posterior se analizaron qué factores pudieron influir en la mala respuesta de los machos trisómicos, se comprobó que el enriquecimiento ambiental en una colonia grande, como es lo habitual, les producía una situación estresante manifestada por el aumento de corticosterona, y una situación como de indefensión que probablemente interfería en su tarea de aprendizaje. Y esto no ocurría en los ratones normales (Martínez- Cué et al., 2005). Cuando se analizó después el cerebro de las hembras que habían mejorado parcialmente su aprendizaje mediante el enriquecimiento ambiental, y se comparó con el de sus hermanas controles, se apreció que el aprendizaje en las controles había hecho aumentar el número de espinas de manera significativa; no así en las hembras trisómicas (Dierssen et al., 2003).

A la hora de interpretar estos resultados, indudablemente hemos de señalar que los seres humanos no nos comportamos de la misma manera que los ratones por lo que se refiere a los condicionamientos de sexo, y que no es lo mismo el enriquecimiento ambiental que un programa de Atención Temprana. Sin embargo los resultados nos clarifican algunos aspectos.

 

  1. Es cierto que el enriquecimiento ambiental fue aplicado indiscriminadamente. Pero cabe preguntarse cuántas de nuestras acciones de intervención no son aplicadas de manera indiscriminada, no ajustadas a las cualidades y posibilidades del niño, en un exceso de estimulación que puede resultar contraproducente. Estos experimentos nos indican claramente que lo que puede ser beneficioso para un grupo no lo es para otro. De ahí la importancia de adaptar la estimulación a la actividad familiar convenientemente motivada, como han destacado Maloney y Perales (2012).
  2. La trisomía introdujo un factor de debilidad y de inestabilidad en la respuesta a la acción estimuladora. Porque tanto la parcialidad en la respuesta positiva de las hembras a la estimulación como el perjuicio ocasionado en los machos estuvo condicionado por el factor genético.
  3. Como ya se ha explicado, la técnica del enriquecimiento ambiental aplicada a roedores ocasiona de manera constante una estimulación de la respuesta funcional (mejora de aprendizajes), que se acompaña de incrementos en los parámetros estructurales de la corteza cerebral; cambios estructurales que sirven para consolidar esa función. Esto fue comprobado en los experimentos realizados en ratones normales. No así en las ratonas trisómicas en las que el enriquecimiento mejoró el aprendizaje pero no el número de espinas dendríticas. Esto demuestra algo que habíamos ya anunciado: las técnicas de intervención y de estimulación pueden mejorar la función sin que necesariamente lleguen a mejorar en términos visibles las estructuras; puede fallar este factor de consolidación. Estamos en presencia de plasticidad fisiológica, pero no hemos llegado a demostrar la plasticidad morfológica. Es preciso señalar, además, que se han encontrado alteraciones en los procesos de LTP y LTD de las neuronas hipocámpicas en este modelo de ratón (Galdzicki y Siarey, 2003) (v. capítulo 6). Se ha propuesto que estos trastornos fisiológicos sean los responsables de un pobre modelaje en la organización estructural a largo plazo de las diversas redes neuronales.

Al margen de los experimentos sobre los efectos de la estimulación, se ha analizado también en estos ratones trisómicos el fenómeno de la neurogénesis que subsiste y se mantiene en las etapas postnatales. Se trataba de saber si aparecía este fenómeno también en los ratones trisómicos. Efectivamente, existe neurogénesis en el hipocampo de dichos ratones, lo que significa que la alteración genética no la afecta al menos durante una parte sustancial de la vida (Rueda et al., 2005). Por tanto, este proceso puede contribuir a mantener y renovar estructuras cerebrales que participan en los mecanismos de la memoria y el aprendizaje. Esto fue lo que observaron Chakrabarti et al. (2011), quienes aplicaron una combinación de enriquecimiento ambiental y ejercicio físico a ratones Ts65Dn, iniciándola en el día 18 postnatal. Comprobaron que dicha combinación aumentó la proliferación celular, la neurogénesis y la gliogénesis, en el giro dentado del hipocampo y en la zona subventricular telencefálica, las dos principales áreas de proliferación celular postnatal.

 

4.4. Recomendaciones

De lo expuesto se deduce que, al programar la atención temprana para los bebés y los niños pequeños con síndrome de Down, se ha de tener en cuenta su realidad actual y su previsión futura. La realidad actual indica sus características personales, tan distintas entre los diversos niños: tonicidad, motricidad, sensibilidad, reactividad, capacidad de respuesta y de interacción. Su previsión futura atañe a los puntos débiles que suelen predominar en el fenotipo síndrome de Down y que serán analizados en los futuros capítulos: atención, motivación, memoria, comunicación y lenguaje, porque en función de ellos han de elaborarse programas que inicien el desarrollo de esas áreas. Como ya señalaban Troncoso et al. (1999), debemos tener en cuenta que, hoy en día, el niño pequeño con síndrome de Down, cuando tenga tres años, será ya un alumno en una escuela infantil común para niños sin discapacidad. Y cuando cumpla 6 o 7 años, será un alumno más en un centro escolar ordinario. Estas perspectivas obligan a diseñar los programas de atención temprana de modo que puedan iniciar la escuela primaria en óptimas condiciones. Esta preparación previa incluye diversos aspectos del desarrollo y madurez en las áreas de la autonomía personal, el cuidado de sí mismo, el lenguaje, la socialización, la alfabetización y el área cognitiva.

Buena parte de estas actividades se entrenan y realizan en casa, en familia, atendiendo a las orientaciones que dan los profesionales, pero adaptándolas a la estructura, peculiaridades y condiciones de la propia familia. De este modo, el niño se encuentra en un ambiente familiar afectivo, enriquecedor, estimulante (Diez Martínez, 2008). Cada familia es diferente por lo que hay que respetar su diversidad; frente a una hipotética familia "ideal", los profesionales de la atención temprana se encuentran con una familia real, diferente a otras, y a la que es preciso respetar y alentar.

5. Resumen y conclusiones

Las propiedades plásticas del SNC contribuyen de manera decisiva a:

  • promover su desarrollo y mantener su función a todo lo largo de nuestra existencia
  • ser modulado y modificado por la influencia ambiental presente en cada etapa o circunstancia
  • recibir, almacenar y evocar la información
  • ser reparado y recuperar la función, en grado variable, tras un evento lesivo
  • compensar o corregir, en grado variable, la pérdida ocasionada por una lesión.

La plasticidad es, por tanto, la propiedad que permite que la genética sea invadida, corregida, rectificada por la experiencia vital de cada individuo.

Esta propiedad, sin embargo, tiene unos límites que están impuestos, en condiciones normales, por la propia naturaleza del sistema nervioso, y en condiciones patológicas, por el grado, la naturaleza y la extensión de la lesión que haya padecido.

El objetivo final de la acción educativa sobre un ser humano es conseguir un ser equilibrado. Sin duda, la ejercitación de una determinada habilidad o tarea promueve el desarrollo y función de las estructuras cerebrales que sirven a la ejecución de esa tarea. En eso se basa la formación de un especialista: músico, gimnasta, pintor o analista de sistemas.

El síndrome de Down implica una nueva realidad. Es un cerebro mediatizado por unas alteraciones de origen génico que limitan o constriñen su pleno desarrollo y función. Por su difusa presencia a lo largo y a lo ancho de las estructuras cerebrales, quedan afectados en mayor o menor grado variados sistemas implicados en funciones distintas: lo motórico, lo sensorial, lo verbal, determinados aspectos relacionados con lo cognitivo, con lo adaptativo.

La atención temprana aplicada a los niños con síndrome de Down tiene el objetivo claro de aprovechar las neuroplasticidad para activar y promover las estructuras que han nacido o que se han de desarrollar de un modo deficiente. Tratamos de ejercer una fuerza impulsora contra algo que se resiste, por su propia limitación génica, a ser activado y reparado. Algo que, además, se encuentro disperso por diversas zonas del cerebro y que nos obliga a actuar desde distintos frentes.

Esa es una de las dificultades: el experto en atención temprana ha de atender al individuo en su conjunto, tratando de conseguir el desarrollo más equilibrado posible. Debe saber que la plasticidad funciona pero que tiene un límite, y que es contraproducente tratar de superarlo a costa de un desequilibrio en el desarrollo de toda la propia persona en su conjunto, y de la unidad en la que esa persona se encuentra: la familia. Debe saber que el exceso de estímulos, o el desorden en su aplicación, provocan confusión en los sistemas.

La familia es el entorno en el que mejor se realiza la atención temprana y mejor se atiende a las necesidades reales del niño. La principal tarea de los profesionales es conseguir que la familia asuma ese papel, comprenda los objetivos que se pretenden en el desarrollo del niño, y aprovecha con dedicación e ilusión las miles de oportunidades que la actividad diaria ofrece.

La atención temprana ha demostrado ser eficaz. Pero no tengamos una visión simplista de su eficacia. Pedimos rigor en los conocimientos, pericia en su aplicación, capacidad de previsión sobre la ruta que ese niño va a seguir y sobre el proyecto de vida que deseamos que alcance.

Por último, no olvidemos que en el síndrome de Down no sólo hay problemas biológicos en las etapas de formación y desarrollo del SNC. Los sigue habiendo a lo largo de la vida. Por eso, ya no hablamos tanto de atención temprana como de atención permanente.

 

Bibliografía

Bavelier D, Neville H. Neuroplasticity, Developmental. En: Ramachandran VS (ed). Encyclopedia of the Human Brain, vol 3. New York, Academic Press 2002, p. 561-578.

Busciglio J, Yankner BA. Apoptosis and increased generation of reactive oxygen species in Down’s syndrome neurons in vivo. Nature 1995; 378: 776-779.

Candel I, Carranza JA. Características evolutivas de los niños con síndrome de Down en la infancia. En Candel I (Ed.), Programa de Atención Temprana. Intervención en niños con Síndrome de Down y otros Problemas del Desarrollo, (pp. 55-87). Madrid: CEPE. 1993

Candel I (dir). Atención Temprana. Niños con síndrome de Down y otros problemas del desarrollo. Madrid, FEISD 2003.

Chakrabarti L, Scafidi J, Gallo V, Haydar TF. Environmental enrichment rescues postnatal neurogenesis defect in the male and female Ts65Dn mouse model of Down syndrome. Dev Neurosci 2011; 33: 428-441.

Cunningham C. Intervención temprana: algunos resultados del estudio del grupo Síndrome de Down de Manchester. En: Flórez J, Troncoso MV (eds). Síndrome de Down: Avances en acción Familiar. Fundación Síndrome de Down de Cantabria. Santander 1991.

Dierssen M, Benavides-Piccione R, Martínez-Cué C, Estivill X, Flórez J, Lestón GN, DeFelipe J. Alterations of neocortical pyramidal cell phenotype in the Ts65Dn mouse model of Down syndrome: effects of environmental enrichment. Cerebral Cortex 2003; 13: 758-764.

Dierssen M. Las bases neurobiológicas de la atención temprana. Rev Síndrome Down 1994; 11: 3-9.

Diez Martínez A. Evolución del proceso de atención temprana a partir de la triada profesional-familia-niño. Rev Síndrome de Down 2008; 25: 46-55.

Engidawork E, Gulesserian T, Fountoulakis M, Lubec G. Aberrant protein expression in cerebral cortex of fetus with Down syndrome. Neuroscience 2003; 122: 145-154.

Engidawork E, Lubec G. Molecular changes in fetal Down syndrome brain. J Neurochem 2003; 84: 895-904.

Galdzicki Z, Siarey RJ. Understanding mental retardation in Down’s syndrome using trisomy 16 mouse models. Genes Brain Behav 2003; 2: 167-178.

Hanson MJ. Early intervention for children with Down syndrome. En: Pueschel SM, Tingey C, Rynders JE, Crocker C, Crutcher DM eds). New Perspectives on Down Syndrome. Paul H, Brookes, Baltimore1987.

Hines S, Bennett F. Eficacia de la intervención temprana en los niños con síndrome de Down. Rev Síndrome Down 1997; 14: 5-10.

Huttenlocher PR, Dabholkar Ss. Regional differences in synaptogenesis in human cerebral cortex. J Comp Neurol 1997; 387: 167-178.

Kumin L. Síndrome de Down: habilidades tempranas de comunicación. Una guía para padres y profesionales. CEPE y Fundación Iberoamericana Down21. Madrid 2014.

Mahoney G, MacDonald J. Autism and developmental delays in young children: The responsive teaching curriculum for parents and professionals. Austin: PRO-ED. 2007

Mahoney G, Perales F. El papel de los padres de niños con síndrome de Down y otras discapacidades en la atención temprana. Rev. Síndrome de Down 2012; 29: 46-64.

Martínez-Cué C, Baamonde C, Lumbreras M, Paz J, Davisson MT, Schmidt C, Dierssen M, Flórez J. Differential effects of environmental enrichment on behavior and learning of male and female Ts65Dn mice, a model for Down syndrome. Behav Brain Res 2002; 134:185-200.

Martínez-Cué C, Rueda N, García E, Davisson MT, Schmidt C, Flórez J. Behavioral, cognitive and biochemical responses to different environmental conditions in male Ts65Dn mice, a model of Down syndrome. Behav Brain Res 2005; 63: 174-185.

Meany MJ, Szyf M. Maternal care as a model for experience-dependent chromatin plasticity? Trends Neurosci 2005; 28: 456-463.

Rampon C, Jiang CH, Dong H, Tang YP, Lockhart DJ, Schultz PG, Tsien JZ, Hu Y. Effects of environmental enrichment on gene expression on the brain. Proc Natl Acad Sci USA, 2000; 97: 12880-12884.

Röder B, Rösler F. Compensatory plasticity as a consequence of sensory loss. En: Calvert G, Spence C, Stein BE (eds). The Handbook of Multisensory Processes. Cambridge, MA, The MIT Press 2004, p.719-747.

Rosenzweig MR, Bennett EL. Psychobiology of plasticity: effects of training and experience on brain and behavior. Behav Brain Res 1996; 78: 57-65.

Rueda N, Mostany R, Pazos A, Flórez J, Martínez-Cué C. Cell proliferation is reduced in the dentate gyrus of aged but not young Ts65Dn mice, a model of Down syndrome. Neurosci Lett 2005; 380: 297-301.

Troncoso MV, del Cerro M, Ruiz E. El desarrollo de las personas con síndrome de Down: Un análisis longitudinal. Siglo Cero 1999; 30(4): 7-26.

Yusuf HKM, Islam K. Brain development. En: Ramachandran VS (ed). Encyclopedia of the Human Brain, vol 1. New York, Academic Press 2002, p. 493-507.

Zulueta, MI. La atención temprana. en: El síndrome de Down hoy: perspectivas para el futuro. Fundación Síndrome de Down de Madrid. Madrid 1991.

Zulueta MI, Mollá MT. Programa para la estimulación del desarrollo infantil. Editorial CEPE. Madrid 2006.